Integration of artificial intelligence in mental health therapy: an adaptive model for psychological interventions in the digital era

Authors

  • Untung Nopriansyah Universitas Islam Negeri Raden Intan Lampung, Indonesia
  • Mastura Badzis International Islamic University Malaysia
  • Hesti Rafitasari Universitas Islam Negeri Raden Intan Lampung, Indonesia
  • Dela Amanda Universitas Islam Negeri Raden Intan Lampung, Indonesia

DOI:

https://doi.org/10.64268/jllm.v1i01.5

Keywords:

Artificial Intelligence;, Adaptive Models;, Digital Mental Health;, Psychological Intervention;, Human-Ai Interaction.

Abstract

Background: The rise of mental health disorders has driven the need for accessible and adaptive psychological support through digital means. This study explores user perceptions of adaptive AI in mental health therapy, focusing on interaction quality and effectiveness.

Aim: This study aims to examine the relationship between the adaptive intelligence of AI systems and the quality of psychological interaction on the perceived effectiveness of interventions in AI-based digital therapy.

Method: Employing a descriptive correlational quantitative approach, data were collected from 30 users of mental health AI therapy applications such as Woebot and Wysa. The instrument used was a Likert-scale questionnaire (1–5), and the data were analyzed using descriptive statistics, Pearson correlation, and simple linear regression via SPSS version 26.

Result: The mean scores for all variables fell within a moderately positive range. However, no significant relationship was found between adaptive intelligence or interaction quality and intervention effectiveness (r = -0.308 and r = -0.001; p > 0.05). The regression model was also not significant (R² = 0.096; p = 0.256), indicating a low contribution of the independent variables to perceived effectiveness.

Conclusion: These findings provide valuable insights for the development of more personalized and empathetic AI systems in digital psychological services, and serve as a foundation for ethical and human-centered AI design and policy integration.

References

Alang, S. M. (2019). Mental health care among blacks in america: confronting racism and constructing solutions. Health services research, 54(2), 346–355. https://doi.org/10.1111/1475-6773.13115

Andersson, G., & Titov, N. (2014). Advantagesand limitations of internet-based interventions for common mental disorders. World psychiatry: official journal of the world psychiatric association (wpa), 13(1), 4–11. https://doi.org/10.1002/wps.20083

Bandura, A. (1986). Social foundations of thought and action: a social cognitive theory (pp. Xiii, 617). Prentice-hall, inc.

Batra, S., Baker, R. A., Wang, T., Forma, F., DiBiasi, F., & Peters-Strickland, T. (2017). Digital health technology for use in patients with serious mental illness: a systematic review of the literature. Medical devices (auckland, n.z.), 10, 237–251. https://doi.org/10.2147/MDER.S144158

Baumel, A., Muench, F., Edan, S., & Kane, J. M. (2019). Objective user engagement with mental health apps: systematic search and panel-based usage analysis. Journal of medical internet research, 21(9), e14567. https://doi.org/10.2196/14567

Bickmore, T. W., & Picard, R. W. (2005). Establishing and maintaining long-term human-computer relationships. Acm trans. Comput.-hum.Interact., 12(2), 293–327. https://doi.org/10.1145/1067860.1067867

Calvo, R. A., Dinakar,K., Picard, R., & Maes, P. (2016). Computing in mental health. Proceedings of the 2016 chi conference extended abstracts on human factors in computing systems, 3438–3445. https://doi.org/10.1145/2851581.2856463

Chen, Z. S., Kulkarni, P. (Param), Galatzer-Levy, I. R., Bigio, B., Nasca, C., & Zhang, Y. (2022). Modern views of machine learning for precision psychiatry. Patterns, 3(11), 100602. https://doi.org/10.1016/j.patter.2022.100602

Claridad, T. (n.d.). Position statement on the role of augmented intelligence in clinical practice and research.Doraiswamy, P. M., Blease, C., & Bodner, K. (2020). Artificial intelligence and the future of psychiatry: insights from a global physician survey. Artificial intelligence in medicine, 102, 101753. https://doi.org/10.1016/j.artmed.2019.101753

Fitzpatrick, K.K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (woebot): a randomized controlled trial. Jmir mental health, 4(2), e19. https://doi.org/10.2196/mental.7785

Golden, G., Popescu, C., Israel, S., Perlman, K., Armstrong, C., Fratila, R., Tanguay-Sela, M., & Benrimoh, D. (2023). Applying artificial intelligence to clinical decision support in mental health: what have we learned?arXiv. https://doi.org/10.1016/j.hlpt.2024.100844

Hair, J. F. (2011). Multivariate data analysis: An overview.International encyclopedia of statistical science, 904-907. https://doi.org/10.1007/978-3-642-04898-2_395

He, Y., Yang, L., Qian, C., Li, T., Su, Z., Zhang, Q., & Hou, X. (2023). Conversational agent interventions for mental health problems: systematic review and meta-analysis of randomized controlled trials. Journal of medical internet research, 25, e43862. https://doi.org/10.2196/43862

Hollis, C., Sampson, S., Simons, L., Davies, E. B., Churchill, R., Betton, V., Butler, D., Chapman, K.,Easton, K., Gronlund, T. A., Kabir, T., Rawsthorne, M., Rye, E., & Tomlin, A. (2018). Identifying research priorities for digital technology in mental health care: results of the james lind alliance priority setting partnership. The lancet psychiatry, 5(10), 845–854. https://doi.org/10.1016/S2215-0366(18)30296-7

Hua, Y., Liu, F., Yang, K., Li, Z., Na, H., Sheu, Y., Zhou, P., Moran, L. V., Ananiadou, S., Beam, A., & Torous, J. (2024). Large language models in mental health care: a scoping review(no. Arxiv:2401.02984). Arxiv. https://doi.org/10.2196/preprints.64088

Inkster, B., Sarda, S., & Subramanian, V. (2018). An empathy-driven, conversational artificial intelligence agent (wysa) for digital mental well-being: real-world data evaluation mixed-methods study. Jmir mhealth and uhealth, 6(11), e12106. https://doi.org/10.2196/12106

Khawaja, Z., & Bélisle-Pipon, J.-C. (2023). Your robot therapist is not your therapist: understanding the role of ai-powered mental healthchatbots. Frontiersin digital health, 5, 1278186. https://doi.org/10.3389/fdgth.2023.1278186

King, R. (2002). Cognitive therapy of depression. Aaon beck, john rush, brian shaw, gary emery. New york: guilford, 1979. The australian and new zealand journal of psychiatry, 36(2), 272–275. https://doi.org/10.1046/j.1440-1614.2002.t01-4-01015.x

Lamo, Y., Mukhiya, S. K., Rabbi, F., Aminifar, A., Lillehaug, S. I., Tørresen, J., H Pham, M., Côtè-Allard, U., Noori, F. M., Guribye, F., Inal, Y., Flobakk, E., Wake, J. D., Myklebost, S., Lundervold, A. J., Hammar, A., Nordby, E., Kahlon, S., Kenter, R., ... Nordgreen, T.(2022). Towards adaptive technology in routine mental health care. Digital health, 8, 20552076221128678. https://doi.org/10.1177/20552076221128678

Linardon, J., Cuijpers, P., Carlbring,P., Messer, M., & Fuller-Tyszkiewicz, M. (2019a). The efficacy of app-supported smartphone interventions for mental health problems: a meta-analysis of randomized controlled trials. World psychiatry: official journal of the world psychiatric association (wpa), 18(3), 325–336. https://doi.org/10.1002/wps.20673

Microsoft, 2021. (2025, March 10). Generative ai app developer workflow—azure databricks. Https://learn.microsoft.com/en-us/azure/databricks/generative-ai/tutorials/ai-cookbook/genai-developer-workflow

Mohr, D. C., Weingardt, K. R., Reddy, M., & Schueller, S. M. (2017). Three problems with current digital mental health research. . . And three things we can doabout them. Psychiatric services (washington, d.c.), 68(5), 427–429. https://doi.org/10.1176/appi.ps.201600541

Naslund, J. A., Aschbrenner, K. A., & Bartels, S. J. (2016). How people with serious mental illness use smartphones, mobile apps, and social media. Psychiatric rehabilitation journal, 39(4), 364–367. https://doi.org/10.1037/prj0000207

Norman Donald, A. (2013).The design of everyday things. MIT Press.Rahsepar Meadi, M., Sillekens, T., Metselaar, S., van Balkom, A., Bernstein, J., & Batelaan, N. (2025). Exploring the ethical challenges of conversational ai in mental health care: scoping review. Jmir mental health, 12, e60432. https://doi.org/10.2196/60432

Roscoe, J. T. (1969). Fundamental research statistics for the behavioral scinces.Schreiber, G. (2001). Knowledge engineering and management (mit press). Universities press (india) pvt. Limited.

Shelton, C. R., Kotsiou, A., & Hetzel-Riggin, M. D. (2021). Digital mental health interventions: impact and considerations. In human factors issues and the impact of technology on society(pp. 180–210). Information science reference/igi global. https://doi.org/10.4018/978-1-7998-6453-0.ch008

Suresh, H., & Guttag, J. V. (2021). A framework for understanding sources of harm throughout the machine learning life cycle. Equity and access in algorithms, mechanisms, and optimization, 1–9. https://doi.org/10.1145/3465416.3483305

Tene, O., & Polonetsky, J. (2013). Big data for all: privacy and user control in the age of analytics.Thakkar, A., Gupta, A., & De Sousa, A. (2024). Artificial intelligence in positive mental health: a narrative review. Frontiers in digital health, 6, 1280235. https://doi.org/10.3389/fdgth.2024.1280235

Topol, e. (2019).Deep medicine: how artificial intelligence can make healthcare human again. Hachette uk.

Torous, J., Bucci, S., Bell, I. H., Kessing, L. V., Faurholt-Jepsen, M., Whelan, P., Carvalho, A. F., Keshavan, M., Linardon, J., & Firth, J. (2021). The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality. World psychiatry: official journal of the world psychiatric association (wpa),20(3), 318–335. https://doi.org/10.1002/wps.20883

WHO. (2022). Mental health. https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response

Zainab, H. (2025). Emotion-aware ai: harnessing vpsyc, eeg, and visual recognition for mental health insights. Algovista: journal of ai & computer science, 2(1), 9–17. https://doi.org/10.70445/avjcs.2.1.2025.9-17

Downloads

Published

2025-06-08

How to Cite

Nopriansyah, U., Badzis, M., Rafitasari, H., & Amanda, D. (2025). Integration of artificial intelligence in mental health therapy: an adaptive model for psychological interventions in the digital era. Journal of Life-Span Psychology, Linguistics, and Media Studies, 1(01), 42 – 51. https://doi.org/10.64268/jllm.v1i01.5